Bounding Helly Numbers via Betti Numbers

نویسندگان

  • Xavier Goaoc
  • Pavel Paták
  • Zuzana Patáková
  • Martin Tancer
  • Uli Wagner
چکیده

We show that very weak topological assumptions are enough to ensure the existence of a Hellytype theorem. More precisely, we show that for any non-negative integers b and d there exists an integer h(b, d) such that the following holds. If F is a finite family of subsets of R such that β̃i ( ⋂G) ≤ b for any G ( F and every 0 ≤ i ≤ dd/2e−1 then F has Helly number at most h(b, d). Here β̃i denotes the reduced Z2-Betti numbers (with singular homology). These topological conditions are sharp: not controlling any of these dd/2e first Betti numbers allow for families with unbounded Helly number. Our proofs combine homological non-embeddability results with a Ramsey-based approach to build, given an arbitrary simplicial complex K, some well-behaved chain map C∗(K)→ C∗(R).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounding Betti Numbers of Bipartite Graph Ideals

We prove a conjectured lower bound of Nagel and Reiner on Betti numbers of edge ideals of bipartite graphs.

متن کامل

Crosscap Numbers of Two-component Links

We define the crosscap number of a 2-component link as the minimum of the first Betti numbers of connected, nonorientable surfaces bounding the link. We discuss some properties of the crosscap numbers of 2-component links.

متن کامل

A Sharper Estimate on the Betti Numbers of Sets Defined by Quadratic Inequalities

In this paper we consider the problem of bounding the Betti numbers, bi(S), of a semi-algebraic set S ⊂ R k defined by polynomial inequalities P1 ≥ 0, . . . , Ps ≥ 0, where Pi ∈ R[X1, . . . , Xk] , s < k, and deg(Pi) ≤ 2, for 1 ≤ i ≤ s. We prove that for 0 ≤ i ≤ k − 1, bi(S) ≤ 1 2 + (k − s) + 1 2 · min{s+1,k−i}

متن کامل

Bounding the equivariant Betti numbers and computing the generalized Euler-Poincaré characteristic of symmetric semi-algebraic sets

Unlike the well known classical bounds due to Oleinik and Petrovskii, Thom and Milnor on the Betti numbers of (possibly non-symmetric) real algebraic varieties and semialgebraic sets, the above bound is polynomial in k when the degrees of the defining polynomials are bounded by a constant. Moreover, our bounds are asymptotically tight. As an application we improve the best known bound on the Be...

متن کامل

On a special class of Stanley-Reisner ideals

For an $n$-gon with vertices at points $1,2,cdots,n$, the Betti numbers of its suspension, the simplicial complex that involves two more vertices $n+1$ and $n+2$, is known. In this paper, with a constructive and simple proof, wegeneralize this result to find the minimal free resolution and Betti numbers of the $S$-module $S/I$ where  $S=K[x_{1},cdots, x_{n}]$ and $I$ is the associated ideal to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015